SmashConfig
SmashConfig is an essential tool in pruna for configuring parameters to optimize your models.
The SmashConfig contains configuration for pruna. You can see the configuration for different components in the Customize components section.
Usage examples SmashConfig
This manual explains how to define and use a SmashConfig.
from pruna import SmashConfig
smash_config = SmashConfig()
After creating an empty SmashConfig, you can set activate a algorithm by adding it to the SmashConfig:
smash_config['quantizer'] = 'hqq'
Additionally, you can overwrite the defaults of the Algorithms you have added by setting the hyperparameters in the SmashConfig:
smash_config['hqq_weight_bits'] = 4
You’re done! You created your SmashConfig and can now pass it to the smash function.
Class API SmashConfig
- class SmashConfig(configuration=None, batch_size=1, device=None, cache_dir_prefix=PosixPath('/home/docs/.cache/pruna'))
Bases:
objectWrapper class to hold a ConfigSpace Configuration object as a Smash configuration.
- Parameters:
configuration (list[str] | Dict[str, Any] | Configuration | None, optional) – The configuration to be used for smashing. If None, a default configuration will be created.
batch_size (int, optional) – The number of batches to process at once. Default is 1.
device (str | torch.device | None, optional) – The device to be used for smashing, options are “cpu”, “cuda”, “mps”, “accelerate”. Default is None. If None, the best available device will be used.
cache_dir_prefix (str, optional) – The prefix for the cache directory. If None, a default cache directory will be created.
- classmethod from_list(configuration, batch_size=1, device=None, cache_dir_prefix=PosixPath('/home/docs/.cache/pruna'))
Create a SmashConfig from a list of algorithm names.
- Parameters:
configuration (list[str]) – The list of algorithm names to create the SmashConfig with.
batch_size (int, optional) – The batch size to use for the SmashConfig. Default is 1.
device (str | torch.device | None, optional) – The device to use for the SmashConfig. Default is None.
cache_dir_prefix (str | Path, optional) – The prefix for the cache directory. Default is DEFAULT_CACHE_DIR.
- Returns:
The SmashConfig object instantiated from the list.
- Return type:
Examples
>>> config = SmashConfig.from_list(["fastercache", "diffusers_int8"]) >>> config SmashConfig( 'fastercache': True, 'diffusers_int8': True, )
- classmethod from_dict(configuration, batch_size=1, device=None, cache_dir_prefix=PosixPath('/home/docs/.cache/pruna'))
Create a SmashConfig from a dictionary of algorithms and their hyperparameters.
- Parameters:
configuration (Dict[str, Any]) – The dictionary to create the SmashConfig from.
batch_size (int, optional) – The batch size to use for the SmashConfig. Default is 1.
device (str | torch.device | None, optional) – The device to use for the SmashConfig. Default is None.
cache_dir_prefix (str | Path, optional) – The prefix for the cache directory. Default is DEFAULT_CACHE_DIR.
- Returns:
The SmashConfig object instantiated from the dictionary.
- Return type:
Examples
>>> config = SmashConfig.from_dict({"fastercache": True, "diffusers_int8": True}) >>> config SmashConfig( 'fastercache': True, 'diffusers_int8': True, )
- load_from_json(path)
Load a SmashConfig from a JSON file.
- Parameters:
path (str| Path) – The file path to the JSON file containing the configuration.
- Return type:
None
- save_to_json(path)
Save the SmashConfig to a JSON file, including additional keys.
- Parameters:
path (str| Path]) – The file path where the JSON file will be saved.
- Return type:
None
- flush_configuration()
Remove all algorithm hyperparameters from the SmashConfig.
Examples
>>> config = SmashConfig(["fastercache", "diffusers_int8"]) >>> config.flush_configuration() >>> config SmashConfig()- Return type:
None
- train_dataloader(**kwargs)
Getter for the train DataLoader instance.
- Parameters:
**kwargs (dict) – Any additional arguments used when loading data, overriding the default values provided in the constructor. Examples: img_size: int would override the collate function default for image generation, while batch_size: int, shuffle: bool, pin_memory: bool, … would override the dataloader defaults.
- Returns:
The DataLoader instance associated with the SmashConfig.
- Return type:
torch.utils.data.DataLoader | None
- val_dataloader(**kwargs)
Getter for the validation DataLoader instance.
- Parameters:
**kwargs (dict) – Any additional arguments used when loading data, overriding the default values provided in the constructor. Examples: img_size: int would override the collate function default for image generation, while batch_size: int, shuffle: bool, pin_memory: bool, … would override the dataloader defaults.
- Returns:
The DataLoader instance associated with the SmashConfig.
- Return type:
torch.utils.data.DataLoader | None
- test_dataloader(**kwargs)
Getter for the test DataLoader instance.
- Parameters:
**kwargs (dict) – Any additional arguments used when loading data, overriding the default values provided in the constructor. Examples: img_size: int would override the collate function default for image generation, while batch_size: int, shuffle: bool, pin_memory: bool, … would override the dataloader defaults.
- Returns:
The DataLoader instance associated with the SmashConfig.
- Return type:
torch.utils.data.DataLoader | None
- add_data(arg)
- add_data(dataset_name, *args, **kwargs)
- add_data(datasets, collate_fn, *args, **kwargs)
- add_data(datasets, collate_fn, *args, **kwargs)
- add_data(datamodule)
Add data to the SmashConfig.
- Parameters:
arg (Any) – The argument to be used.
- add_tokenizer(tokenizer)
Add a tokenizer to the SmashConfig.
- Parameters:
tokenizer (str | transformers.AutoTokenizer) – The tokenizer to be added to the SmashConfig.
- Return type:
None
- add_processor(processor)
Add a processor to the SmashConfig.
- Parameters:
processor (str | transformers.AutoProcessor) – The processor to be added to the SmashConfig.
- Return type:
None
- add_target_module(target_module)
Add a target module to prune to the SmashConfig.
- Parameters:
target_module (Any) – The target module to prune.
- Return type:
None
- is_batch_size_locked()
Check if the batch size is locked in the SmashConfig.
- Returns:
True if the batch size is locked, False otherwise.
- Return type:
bool
- add(request)
Add an algorithm or specify the hyperparameters of an algorithm to the SmashConfig.
- Parameters:
request (str | list[str] | dict[str, Any]) – The value to add to the SmashConfig.
- Return type:
None
Examples
>>> config = SmashConfig() >>> config = SmashConfig() >>> config.add("fastercache") >>> config.add("diffusers_int8") >>> config SmashConfig( 'fastercache': True, 'diffusers_int8': True, )
- get_active_algorithms()
Get all active algorithms in this smash config.
- Returns:
The active algorithms in this smash config.
- Return type:
list[str]