Pruna x Replicate
Getting Started with Pruna & Replicate
Replicate is a great platform for running machine learning models in production. However, unoptimized models can rack up costs, slow down inference, and waste resources. In this guide, we’ll walk you through how to use pruna to optimize your models and deploy them on Replicate. While in this guide we will show you how to supercharge your Flux model with pruna_pro, the same workflow applies to using pruna - simply adjust the installation command and the compression configuration.
Step 1: Install Pruna
To use pruna with Replicate, you’ll need Python ≥3.9 and any Nvidia GPU from Replicate. Replicate uses the cog framework for containerizing and deploying models. To integrate pruna, you’ll need to update your cog.yaml
file. Here’s an example configuration:
build:
gpu: true
cuda: "12.4"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
- "git"
- "build-essential"
python_version: "3.11"
run:
- command: pip install pruna_pro==0.2.0 # or pip install pruna==0.2.0
- command: pip install colorama
- command: export CC=/usr/bin/gcc
predict: "predict.py:Predictor"
This setup ensures that pruna is available during the build process and integrates seamlessly with your model code.
Step 2: Optimize Your Model
In this guide, we will show you an example using the Flux Schnell model that is mostly based on this tutorial.
Load Your Model
Start by loading your model using FluxPipeline
. This will serve as the baseline model before optimization.
from diffusers import FluxPipeline
import torch
# Load the model
self.pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16,
token="your_hugging_face_token"
).to("cuda")
Configure Pruna for Optimization
Define a SmashConfig
object that specifies how the model should be optimized. pruna allows you to customize parameters like caching and compilation.
from pruna_pro import SmashConfig, smash
# Configure Pruna Smash
smash_config = SmashConfig()
smash_config['cacher'] = 'periodic'
smash_config['periodic_cache_interval'] = 2
smash_config['periodic_start_step'] = 2
Optimize the Model
Pass your model and configuration to Pruna’s smash()
function, which applies the optimizations.
# Optimize the model
self.pipe = smash(
model=self.pipe,
token='<your_pruna_token>', # replace <your-token> with your actual token or set to None if you do not have one yet
smash_config=smash_config,
)
Use the Optimized Model
After optimization, the model is ready for prediction. For example, you can adjust caching parameters dynamically before generating outputs.
# Generate output
image = self.pipe(
prompt="Your prompt here",
num_inference_steps=4,
).images[0]
Full Code Example
Below is the complete implementation combining all the steps above into a single Predictor class:
import tempfile
import torch
from cog import BasePredictor, Input, Path
from diffusers import FluxPipeline
from pruna_pro import SmashConfig, smash
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load and optimize the model"""
# Load the model
self.pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16,
token="your_hugging_face_token"
).to("cuda")
# Configure Pruna
smash_config = SmashConfig()
smash_config['cacher'] = 'periodic'
smash_config['periodic_cache_interval'] = 2
smash_config['periodic_start_step'] = 2
# Optimize the model
self.pipe = smash(
model=self.pipe,
token="your_pruna_token",
smash_config=smash_config,
)
def predict(
self,
prompt: str = Input(description="Prompt"),
num_inference_steps: int = Input(
description="Number of inference steps", default=4
),
guidance_scale: float = Input(
description="Guidance scale", default=7.5
),
seed: int = Input(description="Seed", default=42),
image_height: int = Input(description="Image height", default=1024),
image_width: int = Input(description="Image width", default=1024),
cache_interval: int = Input(description="Cache interval", default=3),
start_step: int = Input(description="Start step", default=1),
) -> Path:
"""Run a prediction"""
image = self.pipe(
prompt,
height=image_height,
width=image_width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cpu").manual_seed(seed)
).images[0]
output_dir = Path(tempfile.mkdtemp())
image_path = output_dir / "output.png"
image.save(image_path)
return image_path
Deploying the Optimized Model on Replicate
Step 1: Setup GitHub Workflow
To streamline the deployment, you can use GitHub Actions to automate pushing models to Replicate. Here’s an example workflow file (push_flux_schnell.yaml
):
name: Push Flux Schnell to Replicate
on:
workflow_dispatch:
inputs:
model_name:
default: "prunaai/flux-schnell"
jobs:
push_to_replicate:
name: Push to Replicate
runs-on: ubuntu-latest
steps:
- name: Free disk space
uses: jlumbroso/[email protected]
- name: Checkout
uses: actions/checkout@v4
- name: Setup Cog
uses: replicate/setup-cog@v2
with:
token: ${{ secrets.REPLICATE_API_TOKEN }}
- name: Push to Replicate
run: |
cog push
This workflow automates the deployment of your optimized model, saving time and effort.
Step 2: Push the Optimized Model
Once your workflow is set up, you can simply run the Github Action to deploy your model to Replicate.
Ending notes
Congratulations, you deployed your optimized model to Replicate!
When you combine Pruna’s optimization superpowers with Replicate’s seamless deployment platform, you get the best of both worlds—performance, cost savings, and scalability all in one!